ПАПIBIA UПIVERSITY
 OF SCIEחCE AחD TECHחOLOGY
 FACULTY OF HEALTH AND APPLIED SCIENCES
 DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 5
COURSE NAME: GENERAL CHEMISTRY 1B	COURSE CODE: GNC502S
SESSION: NOVEMBER 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	DR. EUODIA HESS DR. MARIUS MUTORWA
MODERATOR:	DR. JULIEN LUSILAO

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly
4. All written work must be done in blue or black ink and sketches can be done in pencil
5. No books, notes and other additional aids are allowed

THIS QUESTION PAPER CONSISTS OF 12 PAGES (Including this front page and attachments)

SECTION A

QUESTION 1: Multiple Choice Questions

- There are 25 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.

1. Which of the following is true regarding the relative molar rates of disappearance of the reactants and the appearance of the products?

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

I. N_{2} appears at the same rate that H_{2} disappears.
II. $\mathrm{H}_{2} \mathrm{O}$ appears at the same rate that NO disappears.
III. NO disappears at the same rate that H_{2} disappears.
A. I only
B. I and II only
C. I and III only
D. II and III only
E. I, II, and III
2. For the reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$, experimental data were collected for three trials:

Experiment	$[\mathrm{A}](\mathrm{M})$	$[\mathrm{B}](\mathrm{M})$	Initial Rate Appearance of $\mathrm{C}\left(\mathrm{M} \mathrm{sec}^{-1}\right)$
1	0.40	0.20	5.5×10^{-3}
2	0.80	0.20	5.5×10^{-3}
3	0.40	0.40	2.2×10^{-2}

What is the rate law of the reaction?
A. Rate $=k[A][B]$
B. Rate $=k[A]^{0}[B]^{2}$
C. Rate $=k[A]^{2}[B]^{2}$
D. Rate $=k[A]^{2}[B]^{0}$
E. \quad Rate $=k[A][B]^{2}$
3. For a reaction $A+B \rightarrow C+D$, the energy of activation and enthalpy change of reaction were found to be $80 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $+20 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. What is the value of the activation energy for the reverse reaction?
A. $+60 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $+100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-80 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $+20 \mathrm{~kJ} \mathrm{~mol}^{-1}$
E. Insufficient information
4. Write the appropriate equilibrium constant expression, K_{c}, for the following reaction:

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{CO}_{2}(\mathrm{~g})
$$

A. $\mathrm{K}_{\mathrm{c}}=\mathrm{k}[\mathrm{CO}]^{2}\left[\mathrm{O}_{2}\right]$
B. $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CO} \llbracket \mathrm{O}_{2}\right]}$
C. $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{CO}]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{CO}_{2}\right]}$
D. $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]^{2}}{\left[\mathrm{CO} \llbracket \mathrm{O}_{2}\right]}$
E. $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]^{2}}{[\mathrm{CO}]^{2}\left[\mathrm{O}_{2}\right]}$
5. Suppose we rewrite the balanced reaction in Question 4 as:

$$
\mathrm{CO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons \mathrm{CO}_{2}(\mathrm{~g})
$$

What would be the equilibrium constant, K_{C}^{\prime}, for this reaction?
A. Same(i.e. $\mathrm{K}_{\mathrm{c}}{ }^{\prime}=\mathrm{K}_{\mathrm{c}}$)
B. $K_{c}{ }^{\prime}=\left(K_{c}\right)^{1 / 2}$
C. $K_{c}{ }^{\prime}=K_{c} / 2$
D. $K_{c}{ }^{\prime}=K_{c}{ }^{2}$
E. $K_{c}{ }^{\prime}=1 / K_{c}$
6. If $K_{\text {eq }}$ is small, it indicates that equilibrium occurs:
A. At a low product concentration
B. At a high product concentration
C. After considerable time
D. With the help of a catalyst
E. With no forward reaction
7. For which one of the following equilibrium equations will K_{p} be equal to K_{c} ?
A. $\mathrm{PCl}_{5}(\mathrm{~g}) \leftrightharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
B. $\mathrm{COCl}_{2}(\mathrm{~g}) \leftrightharpoons \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
C. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{HI}(\mathrm{g})$
D. $3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
E. $2 \mathrm{SO}_{3}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{g})$
8. Consider the following equilibrium:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

At equilibrium $\left[\mathrm{H}_{2}\right]=0.00220 \mathrm{M},\left[\mathrm{I}_{2}\right]=0.00220 \mathrm{M}$, and $[\mathrm{HI}]=0.0156 \mathrm{M}$. The value of the K_{c} is
A. 3.10×10^{-4}
B. 1.99×10^{-2}
C. 5.03×10^{1}
D. 3.22×10^{3}
E. 1
9. Arrhenius would define a base as:
I. Something which yields hydroxide ions in solution
II. A proton acceptor
III. An electron pair donor
A. I, II, and III
B. I and III
C. II only
D. I only
E. I and II
10. In the equilibrium expression for the reaction $\mathrm{BaSO}_{4}(\mathrm{~s}) \leftrightharpoons \mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq}), \mathrm{K}_{\mathrm{sp}}$ is equal to:
A. $\frac{\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]}{\left[\mathrm{BaSO}_{4}\right]}$
B. $\frac{\left[\mathrm{BaSO}_{4}\right]}{\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]}$
C. $\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]$
D. $\frac{\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]}{\mathrm{BaSO}_{4}}$
E. None of the above
11. Calculate the concentration $(\mathrm{mol} / \mathrm{L})$ of a solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ that has a pH of 12.7 ?
A. 1.0×10^{-13}
B. 5.0×10^{-2}
C. 2.0×10^{-13}
D. 2.5×10^{-2}
E. 1.27×10^{1}
12. A buffer solution was prepared by mixing 100 mL of a $1.2 \mathrm{M} \mathrm{NH}_{3}$ solution and 400 mL of a 0.5 $\mathrm{M} \mathrm{NH}{ }_{4} \mathrm{Cl}$ solution. What is the pH of this buffer solution, assuming a final volume of 500 mL and $K_{b}=1.8 \times 10^{-5}$?
A. 1.08
B. 4.96
C. 5.8
D. 9.03
E. 8
13. What kind of hybridization do you expect for each of the carbon atoms indicated in 2methylpropene?

A. \mathbf{A} is $s p^{3} ; \mathbf{B}$ is $s p ; \mathbf{C}$ is $s p$
B. A is $s p^{3} ; \mathrm{B}$ is $s p^{2} ; \mathbf{C}$ is $s p^{2}$
C. A is $s p^{2} ; \mathrm{B}$ is $s p^{3} ; \mathrm{C}$ is $s p^{2}$
D. \mathbf{A} is $s p ; \mathrm{B}$ is $s p^{3}, \mathrm{C}$ is $s p^{3}$
E. \mathbf{A} is $s p^{2} ; \mathbf{B}$ is $s p ; \mathbf{C}$ is $s p^{2}$
14. The structure below is that of Capsaicin, the pungent substance in chilli peppers.

The functional groups of the above structure include:
A. amide; ester; alcohol; alkene
B. ether; amide, alkyne; alcohol
C. alcohol; ester; ether; amine
D. ester; carboxylic acid; alkene; alcohol
E. amine; ester; alkene; alcohol
15. What is the correct IUPAC name for the compound shown below?

A. 3-methyl-4-(1-methylethyl)-5-(propyl)-6-(dimethyl) octane
B. 4-isopropyl-3-methyl-tert-pentylnonane
C. 4-(1,1-dimethylpropyl)-5-(1-methylethyl)-6-(methyl) nonane
D. 3-methyl-4-(1-methylethyl)-5-(1,1-dimethylpropyl) nonane
E. 3-methyl-4-(1,1-dimethyl)-5-(1,1-dimethylpropyl) nonane
16. The line-bond structure shown below is the compound Folic Acid, an essential vitamin that the body uses to make DNA and metabolise amino acids.

The correct molecular (or condensed) formula for Folic Acid is:
A. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{O}_{4}$
B. $\mathrm{C}_{19} \mathrm{H}_{7} \mathrm{~N}_{7} \mathrm{O}_{6}$
C. $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{7} \mathrm{O}_{6}$
D. $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{O}_{6}$
E. $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{~N}_{7} \mathrm{O}_{6}$
17. Which one of the structures in a to d is NOT a valid resonance structure for the anion in the box below?

a.

b.

c.

d.

A. a
B. b
C. c
D. d
E. e
18. How are the molecules in the following pair related?

A. They are constitutional isomers
B. They are stereoisomers
C. They are resonance structures
D. Conformational isomers
E. They are unrelated
19. Which of the following molecules contain both covalent and ionic bonds?
$\mathrm{CH}_{3} \mathrm{OH}$
I
$\mathrm{Na}_{2} \mathrm{CO}_{3}$
II
$\mathrm{NH}_{4} \mathrm{Cl}$
III
NaCl IV
A. I and II
B. II and IV
C. I, II and IV
D. II and III
E. II, III and IV
20. Which of the molecules below are polar?
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$
I

II
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
III
$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$
$\mathrm{CH}_{3} \mathrm{OH}$
IV
A. III, IV and V
B. I and IV
C. II, III and V
D. I and III
E. I, II, III and V
21. What is the electron configuration for the Fe^{3+} ion?
A. $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{6}$
B. $[A r] 4 s^{0} 3 d^{7}$
C. $[\operatorname{Ar}] 4 s^{0} 3 d^{5}$
D. $[A r] 4 s^{2} 3 d^{9}$
E. $[\mathrm{Ne}] 3 s^{2} 3 \mathrm{p}{ }^{10}$
22. Using the VSEPR model, the molecular geometry of the central atom in tetrafluoroborate ion is \qquad -
A. trigonal planar
B. square pyramidal
C. square planar
D. trigonal bipyramidal
E. octahedral
23. The electron domain and molecular geometry of BrO_{2}^{-}is \qquad .
A. tetrahedral and trigonal planar
B. tetrahedral and bent
C. trigonal planar and trigonal planar
D. trigonal pyramidal and linear
E. trigonal pyramidal and seesaw
24. The hybridizations of bromine in BrF_{5} and of arsenic in AsF_{5} are \qquad and
\qquad , respectively.
A. $s p^{3} d^{2}, s p^{3} d$
B. $s p^{3}, s p^{3} d$
C. $s p^{3} d, s p^{3} d^{2}$
D. $s p^{3} d, s p^{3}$
E. $s p^{3} d^{2}, s p^{3} d^{2}$
25. A valid Lewis structure of \qquad cannot be drawn without violating the octet rule.
A. $\mathrm{PO}_{4}{ }^{3-}$
B. SeF_{4}
C. CF_{4}
D. SiF_{4}
E. NF_{3}

QUESTION 1

Considering the following reaction: $2 \mathrm{SO}_{3}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}^{\circ}=+197 \mathrm{~kJ}$
What will happen to the number of moles (increase, decrease or remain the same) of SO_{3} in equilibrium with SO_{2} and O_{2} in each of the following cases?
a. Oxygen gas is added.
b. The pressure is increased by decreasing the volume of the reaction container.
c. The temperature is decreased.
d. Gaseous sulphur dioxide is removed.

QUESTION 2

2.1 In a NaOH solution, $\left[\mathrm{OH}^{-}\right]$is $2.9 \times 10^{-4} \mathrm{M}$. Calculate the pH of the solution.
2.2 Calculate the pH of a:
a. $1.0 \times 10^{-3} \mathrm{M} \mathrm{HCl}$ solution
b. $0.020 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution

QUESTION 3

3.1 Balance the following half reactions:
a. $\mathrm{CrO}_{4}^{2-}(a q) \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}(s) \quad$ (in basic medium)
b. $\mathrm{HNO}_{2}(\mathrm{aq}) \rightarrow \mathrm{NH}_{4}^{+}$(aq) (in acidic medium)
3.2 Find the oxidation number of Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

QUESTION 4

A molecular compound is composed of $60.4 \% \mathrm{Xe}, 22.1 \% \mathrm{O}$ and $17.5 \% \mathrm{~F}$, by mass. If the molecular weight is 217.3 amu :
4.1 What is the molecular formula?
4.2 Draw the most dominant Lewis structure of the compound?
4.3 Predict the molecular geometry using VSEPR model.
4.4 Describe the bonding using valence bond theory.

QUESTION 5

5.1 Arrange the bonds in each of the following sets in order of increasing bond polarity.
a. C-F; O-F and Be-F
b. $\mathrm{O}-\mathrm{Cl} ; \mathrm{S}-\mathrm{Br}$ and $\mathrm{C}-\mathrm{P}$
5.2 Draw all possible resonance structures of the following molecules.
a. SeO_{2}
b. $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-}$

QUESTION 6

6.1 The molecule AsF_{3} has a dipole moment of 2.59D. Which of the geometries are possible: trigonal planar, trigonal pyramidal or T-Shaped? Explain your choice of answer.
6.2 What is the formal charge of the central atom in the $\mathrm{SiF}_{6}{ }^{2-}$ ion?

USEFUL CONSTANTS:

$$
\begin{gathered}
\begin{array}{c}
\text { Gas constant, } \mathrm{R}=8.3145 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1} \\
=0.083145 \mathrm{dm}^{3} \cdot \mathrm{bar} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1} \\
=0.08206 \mathrm{~L} \text { atm } \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}
\end{array} \\
1 \mathrm{~Pa} \cdot \mathrm{~m}^{3}=1 \mathrm{kPa} \cdot \mathrm{~L}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~J} \\
\text { 1 atm }=101325 \mathrm{~Pa}=760 \mathrm{mmHg}=760 \mathrm{torr} \\
\text { Avogadro's Number, } \mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} \\
\text { Planck's constant, } \mathrm{h}=6.626 \times 10^{-34} \mathrm{Js} \\
\text { Speed of light, } \mathrm{c}=2.998 \times 10^{8} \mathrm{~ms}^{-1}
\end{gathered}
$$

PERIODIC TABLE OF THE ELEMENTS

1																	18
1																	2
$\underset{1.00794}{\mathbf{H}}$	2											13	14	15	16	17	He .00260
3	4											5	6	7	8	9	10
Li	Be											B	C	N	0	F	Ne
6.941	9.01218											10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
22.9898	24.305	3	4	5	6	7	8	9	10	11	12	26.9815	28.0855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	$\mathbf{M n}$	Fe	Co	Ni	Cu	$\mathbf{Z n}$	Ga	Ge	As	Se	Br	$\mathbf{K r}$
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
$\mathbf{R b}$	Sr	Y	$\mathbf{Z r}$	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	$\mathbf{X e}$
85.4678	87.62	88.9059	91.22	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.6	126.9	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	$\mathbf{H g}$	Tl	$\mathbf{P b}$	Bi	Po	At	$\mathbf{R n}$
132.905	137.33	174.967	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.908	(209)	(210)	(222)
87	88	103	104	105	106	107	108	109	110	111	112		114		116		118
Fr	$\mathbf{R a}$	Lr	$\mathbf{R f}$	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq		Uuh		Uuo
(223)	226.025	(260)	(261)	(262)	(263)	(264)	(265)	(268)	(269)	(272)	(269)						

| 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{L a}$ | $\mathbf{C e}$ | $\mathbf{P r}$ | $\mathbf{N d}$ | $\mathbf{P m}$ | $\mathbf{S m}$ | $\mathbf{E u}$ | $\mathbf{G d}$ | $\mathbf{T b}$ | $\mathbf{D y}$ | $\mathbf{H o}$ | $\mathbf{E r}$ | $\mathbf{T m}$ | $\mathbf{Y b}$ |
| 138.906 | 140.12 | $\mathbf{1 4 0 . 9 0 8}$ | $\mathbf{1 4 4 . 2 4}$ | (145) | 150.36 | 151.96 | 157.25 | 158.925 | 162.50 | 161.930 | $\mathbf{1 6 7 . 2 6}$ | 166.934 | 173.04 |

89	90	91	92	93	94	95	96	97	98	99	100	101	102
$\mathbf{A c}$	$\mathbf{T h}$	$\mathbf{P a}$	\mathbf{U}	$\mathbf{N p}$	$\mathbf{P u}$	$\mathbf{A m}$	$\mathbf{C m}$	$\mathbf{B k}$	$\mathbf{C f}$	$\mathbf{E s}$	$\mathbf{F m}$	$\mathbf{M d}$	$\mathbf{N o}$
227.028	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)

Lanthanides:
Actinides:

